Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Int J Mol Sci ; 24(11)2023 May 27.
Article in English | MEDLINE | ID: covidwho-20242253

ABSTRACT

Type I and III Interferons (IFNs) are the first lines of defense in microbial infections. They critically block early animal virus infection, replication, spread, and tropism to promote the adaptive immune response. Type I IFNs induce a systemic response that impacts nearly every cell in the host, while type III IFNs' susceptibility is restricted to anatomic barriers and selected immune cells. Both IFN types are critical cytokines for the antiviral response against epithelium-tropic viruses being effectors of innate immunity and regulators of the development of the adaptive immune response. Indeed, the innate antiviral immune response is essential to limit virus replication at the early stages of infection, thus reducing viral spread and pathogenesis. However, many animal viruses have evolved strategies to evade the antiviral immune response. The Coronaviridae are viruses with the largest genome among the RNA viruses. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) pandemic. The virus has evolved numerous strategies to contrast the IFN system immunity. We intend to describe the virus-mediated evasion of the IFN responses by going through the main phases: First, the molecular mechanisms involved; second, the role of the genetic background of IFN production during SARS-CoV-2 infection; and third, the potential novel approaches to contrast viral pathogenesis by restoring endogenous type I and III IFNs production and sensitivity at the sites of infection.


Subject(s)
COVID-19 , Interferon Type I , Animals , Interferons/genetics , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Interferon Type I/genetics , Cytokines , Immunity, Innate , Immune Evasion
2.
J Immunol Res ; 2023: 2345062, 2023.
Article in English | MEDLINE | ID: covidwho-20235988

ABSTRACT

Recent research has associated the interferon-induced transmembrane protein 3 gene (IFITM3) with the outcomes of coronavirus disease 2019 (COVID-19), although the findings are contradictory. This study aimed to determine the relationship between IFITM3 gene rs34481144 polymorphism and clinical parameters with COVID-19 mortality. The tetra-primer amplification refractory mutation system-polymerase chain reaction assay was used to analyze IFITM3 rs34481144 polymorphism in 1,149 deceased and 1,342 recovered patients. The clinical parameters were extracted from the patients' medical records. In this study, the frequency of IFITM3 rs34481144 CT genotypes (OR 1.47, 95% CI 1.23-1.76, P < 0.0001) in both sexes was significantly higher in deceased patients than in recovered patients. Moreover, IFITM3 rs34481144 TT genotypes (OR 3.38, 95% CI 1.05-10.87, P < 0.0001) in women were significantly associated with COVID-19 mortality. The multivariable logistic regression model results indicated that mean age (P < 0.001), alkaline phosphatase (P = 0.005), alanine aminotransferase (P < 0.001), low-density lipoprotein (P < 0.001), high-density lipoprotein (P < 0.001), fasting blood glucose (P = 0.010), creatinine (P < 0.001), uric acid (P < 0.001), C-reactive protein (P = 0.004), 25-hydroxyvitamin D (P < 0.001), erythrocyte sedimentation rate (P < 0.001), and real-time PCR Ct values (P < 0.001) were linked with increased COVID-19 death rates. In conclusion, IFITM3 rs34481144 gene polymorphism was linked to the mortality of COVID-19, with the rs34481144-T allele being especially important for mortality. Further studies are needed to confirm the results of this study.


Subject(s)
COVID-19 , Genetic Predisposition to Disease , Male , Humans , Female , Polymorphism, Single Nucleotide , Membrane Proteins/genetics , COVID-19/genetics , Genotype , Interferons/genetics , RNA-Binding Proteins/genetics
3.
EMBO Rep ; 24(4): e56660, 2023 04 05.
Article in English | MEDLINE | ID: covidwho-2265979

ABSTRACT

Interferon-induced transmembrane protein 3 (IFITM3) is an antiviral protein that alters cell membranes to block fusion of viruses. Conflicting reports identified opposing effects of IFITM3 on SARS-CoV-2 infection of cells, and its impact on viral pathogenesis in vivo remains unclear. Here, we show that IFITM3 knockout (KO) mice infected with SARS-CoV-2 experience extreme weight loss and lethality compared to mild infection in wild-type (WT) mice. KO mice have higher lung viral titers and increases in inflammatory cytokine levels, immune cell infiltration, and histopathology. Mechanistically, we observe disseminated viral antigen staining throughout the lung and pulmonary vasculature in KO mice, as well as increased heart infection, indicating that IFITM3 constrains dissemination of SARS-CoV-2. Global transcriptomic analysis of infected lungs shows upregulation of gene signatures associated with interferons, inflammation, and angiogenesis in KO versus WT animals, highlighting changes in lung gene expression programs that precede severe lung pathology and fatality. Our results establish IFITM3 KO mice as a new animal model for studying severe SARS-CoV-2 infection and overall demonstrate that IFITM3 is protective in SARS-CoV-2 infections in vivo.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , COVID-19/genetics , Interferons/genetics , Lung , Mice, Knockout
4.
PLoS Pathog ; 19(2): e1011196, 2023 02.
Article in English | MEDLINE | ID: covidwho-2281628

ABSTRACT

The Omicron variant of SARS-CoV-2 is capable of infecting unvaccinated, vaccinated and previously-infected individuals due to its ability to evade neutralization by antibodies. With multiple sub-lineages of Omicron emerging in the last 12 months, there is inadequate information on the quantitative antibody response generated upon natural infection with Omicron variant and whether these antibodies offer cross-protection against other sub-lineages of Omicron variant. In this study, we characterized the growth kinetics of Kappa, Delta and Omicron variants of SARS-CoV-2 in Calu-3 cells. Relatively higher amounts infectious virus titers, cytopathic effect and disruption of epithelial barrier functions was observed with Delta variant whereas infection with Omicron sub-lineages led to a more robust induction of interferon pathway, lower level of virus replication and mild effect on epithelial barrier. The replication kinetics of BA.1, BA.2 and BA.2.75 sub-lineages of the Omicron variant were comparable in cell culture and natural infection in a subset of individuals led to a significant increase in binding and neutralizing antibodies to the Delta variant and all the three sub-lineages of Omicron but the level of neutralizing antibodies were lowest against the BA.2.75 variant. Finally, we show that Cu2+, Zn2+ and Fe2+ salts inhibited in vitro RdRp activity but only Cu2+ and Fe2+ inhibited both the Delta and Omicron variants in cell culture. Thus, our results suggest that high levels of interferons induced upon infection with Omicron variant may counter virus replication and spread. Waning neutralizing antibody titers rendered subjects susceptible to infection by Omicron variants and natural Omicron infection elicits neutralizing antibodies that can cross-react with other sub-lineages of Omicron and other variants of concern.


Subject(s)
COVID-19 , Humans , Broadly Neutralizing Antibodies , Kinetics , SARS-CoV-2/genetics , Antibodies, Neutralizing , Interferons/genetics , Antibodies, Viral
5.
Cells ; 11(18)2022 09 08.
Article in English | MEDLINE | ID: covidwho-2065725

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) is a predominant and ubiquitously expressed cytosolic onfirmedDNA sensor that activates innate immune responses by producing a second messenger, cyclic GMP-AMP (cGAMP), and the stimulator of interferon genes (STING). cGAS contains a highly disordered N-terminus, which can sense genomic/chromatin DNA, while the C terminal of cGAS binds dsDNA liberated from various sources, including mitochondria, pathogens, and dead cells. Furthermore, cGAS cellular localization dictates its response to foreign versus self-DNA. Recent evidence has also highlighted the importance of dsDNA-induced post-translational modifications of cGAS in modulating inflammatory responses. This review summarizes and analyzes cGAS activity regulation based on structure, sub-cellular localization, post-translational mechanisms, and Ca2+ signaling. We also discussed the role of cGAS activation in different diseases and clinical outcomes.


Subject(s)
Membrane Proteins , Nucleotidyltransferases , Chromatin , DNA/metabolism , Interferons/genetics , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism
6.
J Mol Biol ; 434(6): 167277, 2022 03 30.
Article in English | MEDLINE | ID: covidwho-2061566

ABSTRACT

Establishment of the interferon (IFN)-mediated antiviral state provides a crucial initial line of defense against viral infection. Numerous genes that contribute to this antiviral state remain to be identified. Using a loss-of-function strategy, we screened an original library of 1156 siRNAs targeting 386 individual curated human genes in stimulated microglial cells infected with Zika virus (ZIKV), an emerging RNA virus that belongs to the flavivirus genus. The screen recovered twenty-one potential host proteins that modulate ZIKV replication in an IFN-dependent manner, including the previously known IFITM3 and LY6E. Further characterization contributed to delineate the spectrum of action of these genes towards other pathogenic RNA viruses, including Hepatitis C virus and SARS-CoV-2. Our data revealed that APOL3 acts as a proviral factor for ZIKV and several other related and unrelated RNA viruses. In addition, we showed that MTA2, a chromatin remodeling factor, possesses potent flavivirus-specific antiviral functions induced by IFN. Our work identified previously unrecognized genes that modulate the replication of RNA viruses in an IFN-dependent manner, opening new perspectives to target weakness points in the life cycle of these viruses.


Subject(s)
Flavivirus , Interferons , Virus Replication , Apolipoproteins L/genetics , Apolipoproteins L/metabolism , Flavivirus/physiology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Interferons/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , SARS-CoV-2/physiology , Zika Virus/physiology
7.
Microbiol Spectr ; 10(5): e0160422, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2019791

ABSTRACT

The Delta variant of SARS-CoV-2 has caused more severe infections than its previous variants. We studied the host innate immune response to Delta, Alpha, and two earlier variants to map the evolution of the recent ones. Our biochemical and transcriptomic studies in human colon epithelial cell line Caco2 reveal that Alpha and Delta have progressively evolved over the ancestral variants by silencing the innate immune response, thereby limiting cytokine and chemokine production. Though Alpha silenced the retinoic acid-inducible gene (RIG)-I-like receptor (RLR) pathway just like Delta did, it failed to persistently silence the innate immune response, unlike Delta. Both Alpha and Delta have evolved to resist interferon (IFN) treatment, while they are still susceptible to RLR activation, further highlighting the importance of RLR-mediated, IFN-independent mechanisms in restricting SARS-CoV-2. Our studies reveal that SARS-CoV-2 Delta has integrated multiple mechanisms to silence the host innate immune response and evade the IFN response. We speculate that Delta's silent replication and sustained suppression of the host innate immune response, thereby resulting in delayed or reduced intervention by the adaptive immune response, could have potentially contributed to the severe symptoms and poor recovery index associated with it. It is likely that this altered association with the host would play an important role in the coevolution of SARS-CoV-2 with humans. IMPORTANCE Viruses generally learn to coexist with the host during the process of evolution. It is expected that SARS-CoV-2 would also evolve to coexist in humans by trading off its virulence for longer persistence, causing milder disease. Clinically, the fatality associated with COVID-19 has been declining due to vaccination and preinfections, but the Delta variant caused the most severe disease and fatality across several parts of the world. Our study identified an evolving trend of SARS-CoV-2 variants where the variants that emerged during early parts of the pandemic caused a more robust innate immune response, while the later emerging variant Delta showed features of suppression of the response. The features that Delta has acquired could have strongly influenced the distinct pathophysiology associated with its infection. How these changed associations with the host influence the long-term evolution of the virus and the disease outcome should be closely studied to understand the process of viral evolution.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Interferons/genetics , Caco-2 Cells , Immunity, Innate , Antiviral Agents , Epithelial Cells , Cytokines , Chemokines , Colon , Tretinoin
8.
Biomed Pharmacother ; 153: 113396, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2003883

ABSTRACT

Recent studies have shown that methylation changes identified in blood cells of COVID-19 patients have a potential to be used as biomarkers of SARS-CoV-2 infection outcomes. However, different studies have reported different subsets of epigenetic lesions that stratify patients according to the severity of infection symptoms, and more importantly, the significance of those epigenetic changes in the pathology of the infection is still not clear. We used methylomics and transcriptomics data from the largest so far cohort of COVID-19 patients from four geographically distant populations, to identify casual interactions of blood cells' methylome in pathology of the COVID-19 disease. We identified a subset of methylation changes that is uniformly present in all COVID-19 patients regardless of symptoms. Those changes are not present in patients suffering from upper respiratory tract infections with symptoms similar to COVID-19. Most importantly, the identified epigenetic changes affect the expression of genes involved in interferon response pathways and the expression of those genes differs between patients admitted to intensive care units and only hospitalized. In conclusion, the DNA methylation changes involved in pathophysiology of SARS-CoV-2 infection, which are specific to COVID-19 patients, can not only be utilized as biomarkers in the disease management but also present a potential treatment target.


Subject(s)
COVID-19 , Biomarkers , COVID-19/genetics , COVID-19/immunology , Epigenesis, Genetic , Humans , Interferons/genetics , Interferons/immunology , SARS-CoV-2
9.
EMBO Rep ; 23(9): e55101, 2022 09 05.
Article in English | MEDLINE | ID: covidwho-1994616

ABSTRACT

Emerging evidence shows that transposable elements (TEs) are induced in response to viral infections. This TE induction is suggested to trigger a robust and durable interferon response, providing a host defense mechanism. Here, we analyze TE expression changes in response to SARS-CoV-2 infection in different human cellular models. Unlike other viruses, SARS-CoV-2 infection does not lead to global upregulation of TEs in primary cells. We report a correlation between TEs activation and induction of interferon-related genes, suggesting that failure to activate TEs may account for the weak interferon response. Moreover, we identify two variables that explain most of the observed diverseness in immune responses: basal expression levels of TEs in the pre-infected cells and the viral load. Finally, analyzing the SARS-CoV-2 interactome and the epigenetic landscape around the TEs activated following infection, we identify SARS-CoV-2 interacting proteins, which may regulate chromatin structure and TE transcription. This work provides a possible functional explanation for SARS-CoV-2 success in its fight against the host immune system and suggests that TEs could serve as potential drug targets for COVID-19.


Subject(s)
COVID-19 , Antiviral Agents , COVID-19/genetics , DNA Transposable Elements/genetics , Humans , Interferons/genetics , SARS-CoV-2
10.
Int J Mol Sci ; 23(13)2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1934131

ABSTRACT

Interferon (IFN) signaling resulting from external or internal inflammatory processes initiates the rapid release of cytokines and chemokines to target viral or bacterial invasion, as well as cancer and other diseases. Prolonged exposure to IFNs, or the overexpression of other cytokines, leads to immune exhaustion, enhancing inflammation and leading to the persistence of infection and promotion of disease. Hence, to control and stabilize an excessive immune response, approaches for the management of inflammation are required. The potential use of peptides as anti-inflammatory agents has been previously demonstrated. Our team discovered, and previously published, a 9-amino-acid cyclic peptide named ALOS4 which exhibits anti-cancer properties in vivo and in vitro. We suggested that the anti-cancer effect of ALOS4 arises from interaction with the immune system, possibly through the modulation of inflammatory processes. Here, we show that treatment with ALOS4 decreases basal cytokine levels in mice with chronic inflammation and prolongs the lifespan of mice with acute systemic inflammation induced by irradiation. We also show that pretreatment with ALOS4 reduces the expression of IFN alpha, IFN lambda, and selected interferon-response genes triggered by polyinosinic-polycytidylic acid (Poly I:C), a synthetic analog of viral double-stranded RNA, while upregulating the expression of other genes with antiviral activity. Hence, we conclude that ALOS4 does not prevent IFN signaling, but rather supports the antiviral response by upregulating the expression of interferon-response genes in an interferon-independent manner.


Subject(s)
Interferon-alpha , Interferons , Animals , Antiviral Agents/pharmacology , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Interferon-alpha/genetics , Interferon-alpha/pharmacology , Interferons/genetics , Mice , Poly I-C/pharmacology
11.
Cytokine ; 157: 155957, 2022 09.
Article in English | MEDLINE | ID: covidwho-1914292

ABSTRACT

BACKGROUND AND AIMS: Interferon-induced transmembrane protein 3 (IFITM3) plays a critical role in the adaptive and innate immune response by preventing membrane hemifusion between the host and viral cell cytoplasm. This study aimed to evaluate whether IFITM3 rs12252 polymorphism is related to an increased mortality rate of coronavirus disease 2019 (COVID-19). METHODS: The IFITM3 rs12252 polymorphism was genotyped using the amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) in 548 dead and 630 improved patients positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RESULTS: In the present study, the minor allele frequency of IFITM3 rs12252 (C) was significantly more frequent in dead patients than in improved cases. The results of the multivariate logistic regression analysis indicated that the lower lipid profiles, PCR Ct value, 25-hydroxyvitamin D, and uric acid and higher levels of erythrocyte sedimentation rate (ESR), liver enzymes, and creatinine, and IFITM3 rs12252 CC genotypes were related to the COVID-19 infection mortality. CONCLUSIONS: In summary, our findings suggested a possible link between the mortality of COVID-19 infection, the CC genotypes of IFITM3 rs12252, and clinical parameters. Further investigations are required worldwide to prove the link relationship of COVID-19 mortality with host genetic factors.


Subject(s)
COVID-19 , Influenza, Human , COVID-19/genetics , Genetic Predisposition to Disease , Humans , Interferons/genetics , Membrane Proteins/genetics , Polymorphism, Single Nucleotide/genetics , RNA-Binding Proteins/genetics , SARS-CoV-2
12.
Front Immunol ; 13: 844657, 2022.
Article in English | MEDLINE | ID: covidwho-1896678

ABSTRACT

Porcine epidemic diarrhea (PED) and transmissible gastroenteritis (TGE) caused by porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are two highly contagious intestinal diseases in the swine industry worldwide. Notably, coinfection of TGEV and PEDV is common in piglets with diarrhea-related diseases. In this study, intestinal porcine epithelial cells (IPEC-J2) were single or coinfected with PEDV and/or TGEV, followed by the comparison of differentially expressed genes (DEGs), especially interferon-stimulated genes (ISGs), between different groups via transcriptomics analysis and real-time qPCR. The antiviral activity of swine interferon-induced transmembrane protein 3 (sIFITM3) on PEDV and TGEV infection was also evaluated. The results showed that DEGs can be detected in the cells infected with PEDV, TGEV, and PEDV+TGEV at 12, 24, and 48 hpi, and the number of DEGs was the highest at 24 hpi. The DEGs are mainly annotated to the GO terms of protein binding, immune system process, organelle part, and intracellular organelle part. Furthermore, 90 ISGs were upregulated during PEDV or TGEV infection, 27 of which were associated with antiviral activity, including ISG15, OASL, IFITM1, and IFITM3. Furthermore, sIFITM3 can significantly inhibit PEDV and TGEV infection in porcine IPEC-J2 cells and/or monkey Vero cells. Besides, sIFITM3 can also inhibit vesicular stomatitis virus (VSV) replication in Vero cells. These results indicate that sIFITM3 has broad-spectrum antiviral activity.


Subject(s)
Coinfection , Gastroenteritis, Transmissible, of Swine , Porcine epidemic diarrhea virus , Transmissible gastroenteritis virus , Animals , Antiviral Agents , Chlorocebus aethiops , Diarrhea , Gastroenteritis, Transmissible, of Swine/metabolism , Interferons/genetics , Porcine epidemic diarrhea virus/genetics , Swine , Transcriptome , Transmissible gastroenteritis virus/genetics , Vero Cells
13.
Viruses ; 14(5)2022 05 07.
Article in English | MEDLINE | ID: covidwho-1862916

ABSTRACT

Background. Interferon is a marker of host antiviral immunity, which is disordered in COVID-19 patients. ERV can affect the secretion of interferon through the cGAS-STING pathway. In this study, we explored whether IFN-I and HERV-K (HML-2) were activated in COVID-19 patients and whether there was an interaction between them. Methods. We collected blood samples from COVID-19 patients and healthy controls. We first detected the expression of HERV-K (HML-2) gag, env, and pol genes and IFN-I-related genes between patients and healthy people by qPCR, synchronously detected VERO cells infected with SARS-CoV-2. Then, the chromosome distributions of highly expressed HERV-K (HML-2) gag, env, and pol genes were mapped by the next-generation sequencing results, and GO analysis was performed on the related genes. Results. We found that the HERV-K (HML-2) gag, env, and pol genes were highly expressed in COVID-19 patients and VERO cells infected with SARS-CoV-2. The interferon-related genes IFNB1, ISG15, and IFIT1 were also activated in COVID-19 patients, and GO analysis showed that HERV-K (HML-2) can regulate the secretion of interferon. Conclusions. The high expression of HERV-K (HML-2) might activate the increase of interferon in COVID-19 patients, proving that HERV-K does not only play a negative role in the human body.


Subject(s)
COVID-19 , Endogenous Retroviruses , Interferons , Animals , Antiviral Agents , COVID-19/virology , Chlorocebus aethiops , Endogenous Retroviruses/genetics , Genes, Viral , Humans , Interferons/genetics , SARS-CoV-2 , Vero Cells
14.
J Mol Biol ; 434(6): 167265, 2022 03 30.
Article in English | MEDLINE | ID: covidwho-1851575

ABSTRACT

Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is characterized by a delayed interferon (IFN) response and high levels of proinflammatory cytokine expression. Type I and III IFNs serve as a first line of defense during acute viral infections and are readily antagonized by viruses to establish productive infection. A rapidly growing body of work has interrogated the mechanisms by which SARS-CoV-2 antagonizes both IFN induction and IFN signaling to establish productive infection. Here, we summarize these findings and discuss the molecular interactions that prevent viral RNA recognition, inhibit the induction of IFN gene expression, and block the response to IFN treatment. We also describe the mechanisms by which SARS-CoV-2 viral proteins promote host shutoff. A detailed understanding of the host-pathogen interactions that unbalance the IFN response is critical for the design and deployment of host-targeted therapeutics to manage COVID-19.


Subject(s)
COVID-19 , Immune Evasion , Interferons , SARS-CoV-2 , COVID-19/genetics , COVID-19/immunology , Gene Expression , Humans , Immunity, Innate , Interferons/genetics , RNA, Viral/immunology , SARS-CoV-2/immunology
15.
J Infect ; 84(6): 825-833, 2022 06.
Article in English | MEDLINE | ID: covidwho-1799830

ABSTRACT

BACKGROUND: Recent evidence has linked the interferon-induced transmembrane protein 3 gene (IFITM3) to coronavirus disease 2019 (COVID-19) outcomes, but the results are inconsistent. The purpose of this meta-analysis was to evaluate the association of IFITM3 gene polymorphisms with COVID-19 susceptibility and severity. METHOD: A systematic search was performed with PubMed, Web of Science, Cochrane Library, and Embase from the date of inception to 20 December 2021. The results were analyzed with pooled odds ratios (ORs) and 95% confidence intervals (95% CIs). The robustness was performed using the method of sequential removal for each trial. RESULTS: Four studies involving 1989 subjects were included, from which 1114 patients were positive for COVID-19. For IFITM3 rs12252, the pooled OR showed that there was a significant association between the genotype frequencies and infection with COVID-19 in any of the gene models, i.e., the allelic model (OR = 1.91, 95% CI, 1.36-2.68), the dominant model (OR = 1.80, 95% CI, 1.27-2.56), the recessive model (OR = 5.67, 95% CI, 1.01-31.77), the heterozygous model (OR = 1.65, 95% CI, 1.16-2.36) and the homozygous model (OR = 5.88, 95% CI, 1.05-32.98). The results stratified by severity showed that there was a significant correlation only between the allelic (OR = 0.69, 95% CI, 0.49-0.97) and recessive (OR = 0.43, 95% CI, 0.20-0.93) models. Our results did not support the associations between the IFITM3 rs34481144 gene polymorphism and COVID-19 susceptibility or severity in any of the gene models. CONCLUSIONS: The findings indicated that IFITM3 rs12252 gene polymorphisms were associated with COVID-19 susceptibility and that the rs12252-C variant was particularly critical for severity. Genetic factors should be considered in future vaccine development.


Subject(s)
COVID-19 , Influenza, Human , COVID-19/genetics , Genetic Predisposition to Disease , Humans , Interferons/genetics , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , RNA-Binding Proteins/genetics
16.
Virology ; 571: 12-20, 2022 06.
Article in English | MEDLINE | ID: covidwho-1799672

ABSTRACT

An epidemic owing to Norovirus (NoV) has recently been occurring worldwide. Severe cases of NoV can lead to patient death, resulting in significant public health problems. In the early stages of infection, antagonizing the production of host interferon (IFN) is an important strategy for viruses to establish infection. However, the relationship between NoV and interferon and its mechanism remains unclear. In this study, the 3C-like protease encoded by NoV was found to effectively suppress Sendai virus (SEV)-mediated IFN-ß production by cleaving the NF-κB essential modulator (NEMO). Glutamine 205 is the site of NoV3CLpro-mediated cleavage of NEMO and this cleavage suppresses the ability of NEMO to activate downstream IFN production. These findings demonstrate that NoV3CLpro-induced cleavage limits NEMO to the activation of type I IFN signaling. In summary, our findings indicate that NoV3CLpro is a new interferon antagonist, and enhances our understanding of the escape of innate immunity mediated by NoV3CLpro.


Subject(s)
Norovirus , Peptide Hydrolases , Antiviral Agents , Cysteine Endopeptidases , Humans , Interferon-beta/genetics , Interferons/genetics , Norovirus/genetics
17.
Nat Commun ; 13(1): 679, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1671560

ABSTRACT

Emergence of mutant SARS-CoV-2 strains associated with an increased risk of COVID-19-related death necessitates better understanding of the early viral dynamics, host responses and immunopathology. Single cell RNAseq (scRNAseq) allows for the study of individual cells, uncovering heterogeneous and variable responses to environment, infection and inflammation. While studies have reported immune profiling using scRNAseq in terminal human COVID-19 patients, performing longitudinal immune cell dynamics in humans is challenging. Macaques are a suitable model of SARS-CoV-2 infection. Our longitudinal scRNAseq of bronchoalveolar lavage (BAL) cell suspensions from young rhesus macaques infected with SARS-CoV-2 (n = 6) demonstrates dynamic changes in transcriptional landscape 3 days post- SARS-CoV-2-infection (3dpi; peak viremia), relative to 14-17dpi (recovery phase) and pre-infection (baseline) showing accumulation of distinct populations of both macrophages and T-lymphocytes expressing strong interferon-driven inflammatory gene signature at 3dpi. Type I interferon response is induced in the plasmacytoid dendritic cells with appearance of a distinct HLADR+CD68+CD163+SIGLEC1+ macrophage population exhibiting higher angiotensin-converting enzyme 2 (ACE2) expression. These macrophages are significantly enriched in the lungs of macaques at 3dpi and harbor SARS-CoV-2 while expressing a strong interferon-driven innate anti-viral gene signature. The accumulation of these responses correlated with decline in viremia and recovery.


Subject(s)
COVID-19/immunology , Interferons/pharmacology , Myeloid Cells/immunology , SARS-CoV-2/drug effects , Animals , Antiviral Agents , Bronchoalveolar Lavage , Disease Models, Animal , Humans , Immunity, Innate , Inflammation , Interferon Type I/genetics , Interferon Type I/pharmacology , Interferons/genetics , Lung/immunology , Lung/pathology , Macaca mulatta , Macrophages/immunology , T-Lymphocytes/immunology
18.
Viruses ; 14(1)2021 12 29.
Article in English | MEDLINE | ID: covidwho-1639272

ABSTRACT

Inactivated vaccines based on cell culture are very useful in the prevention and control of many diseases. The most popular strategy for the production of inactivated vaccines is based on monkey-derived Vero cells, which results in high productivity of the virus but has a certain carcinogenic risk due to non-human DNA contamination. Since human diploid cells, such as MRC-5 cells, can produce a safer vaccine, efforts to develop a strategy for inactivated vaccine production using these cells have been investigated using MRC-5 cells. However, most viruses do not replicate efficiently in MRC-5 cells. In this study, we found that rabies virus (RABV) infection activated a robust interferon (IFN)-ß response in MRC-5 cells but almost none in Vero cells, suggesting that the IFN response could be a key limiting factor for virus production. Treatment of the MRC-5 cells with IFN inhibitors increased RABV titers by 10-fold. Additionally, the RABV titer yield was improved five-fold when using IFN receptor 1 (IFNAR1) antibodies. As such, we established a stable IFNAR1-deficient MRC-5 cell line (MRC-5IFNAR1-), which increased RABV production by 6.5-fold compared to normal MRC-5 cells. Furthermore, in a pilot-scale production in 1500 square centimeter spinner flasks, utilization of the MRC-5IFNAR1- cell line or the addition of IFN inhibitors to MRC cells increased RABV production by 10-fold or four-fold, respectively. Thus, we successfully established a human diploid cell-based pilot scale virus production platform via inhibition of IFN response for rabies vaccines, which could also be used for other inactivated virus vaccine production.


Subject(s)
Diploidy , Interferons/pharmacology , Rabies Vaccines/immunology , Rabies virus , Rabies/prevention & control , Animals , Antibodies, Viral , Cell Line , Chlorocebus aethiops , Gene Expression , Humans , Interferons/genetics , Receptor, Interferon alpha-beta/genetics , Vaccines, Inactivated/immunology , Vero Cells
19.
PLoS Biol ; 19(12): e3001065, 2021 12.
Article in English | MEDLINE | ID: covidwho-1594053

ABSTRACT

The pandemic spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19), represents an ongoing international health crisis. A key symptom of SARS-CoV-2 infection is the onset of fever, with a hyperthermic temperature range of 38 to 41°C. Fever is an evolutionarily conserved host response to microbial infection that can influence the outcome of viral pathogenicity and regulation of host innate and adaptive immune responses. However, it remains to be determined what effect elevated temperature has on SARS-CoV-2 replication. Utilizing a three-dimensional (3D) air-liquid interface (ALI) model that closely mimics the natural tissue physiology of SARS-CoV-2 infection in the respiratory airway, we identify tissue temperature to play an important role in the regulation of SARS-CoV-2 infection. Respiratory tissue incubated at 40°C remained permissive to SARS-CoV-2 entry but refractory to viral transcription, leading to significantly reduced levels of viral RNA replication and apical shedding of infectious virus. We identify tissue temperature to play an important role in the differential regulation of epithelial host responses to SARS-CoV-2 infection that impact upon multiple pathways, including intracellular immune regulation, without disruption to general transcription or epithelium integrity. We present the first evidence that febrile temperatures associated with COVID-19 inhibit SARS-CoV-2 replication in respiratory epithelia. Our data identify an important role for tissue temperature in the epithelial restriction of SARS-CoV-2 independently of canonical interferon (IFN)-mediated antiviral immune defenses.


Subject(s)
Epithelial Cells/immunology , Hot Temperature , Immunity, Innate/immunology , Interferons/immunology , Respiratory Mucosa/immunology , SARS-CoV-2/immunology , Virus Replication/immunology , Adolescent , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Epithelial Cells/metabolism , Epithelial Cells/virology , Female , Gene Expression Profiling/methods , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/genetics , Interferons/genetics , Interferons/metabolism , Male , Middle Aged , Models, Biological , RNA-Seq/methods , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Tissue Culture Techniques , Vero Cells , Virus Replication/genetics , Virus Replication/physiology
20.
Virol J ; 18(1): 221, 2021 11 14.
Article in English | MEDLINE | ID: covidwho-1518281

ABSTRACT

BACKGROUND: The recent pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has elevated several clinical and scientific questions. These include how host genetic factors influence the pathogenesis and disease susceptibility. Therefore, the aim of this study was to evaluate the impact of interferon lambda 3 and 4 (IFNL3/4) gene polymorphisms and clinical parameters on the resistance and susceptibility to coronavirus disease 2019 (COVID-19) infection. METHODS: A total of 750 SARS-CoV-2 positive patients (375 survivors and 375 nonsurvivors) were included in this study. All single-nucleotide polymorphisms (SNPs) on IFNL3 (rs12979860, rs8099917, and rs12980275) and IFNL4 rs368234815 were genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. RESULTS: In this study, a higher viral load (low PCR Ct value) was shown in nonsurvivor patients. In survivor patients, the frequency of the favorable genotypes of IFNL3/4 SNPs (rs12979860 CC, rs12980275 AA, rs8099917 TT, and rs368234815 TT/TT) was significantly higher than in nonsurvivor patients. Multivariate logistic regression analysis has shown that a higher low-density lipoprotein (LDL), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and PCR Ct value, and lower 25-hydroxyvitamin D, and also IFNL3 rs12979860 TT, IFNL3 rs8099917 GG, IFNL3 rs12980275 GG, and IFNL4 rs368234815 ∆G/∆G genotypes were associated with the severity of COVID-19 infection. CONCLUSIONS: The results of this study proved that the severity of COVID-19 infection was associated with clinical parameters and unfavorable genotypes of IFNL3/IFNL4 SNPs. Further studies in different parts of the world are needed to show the relationship between severity of COVID-19 infection and host genetic factors.


Subject(s)
COVID-19/diagnosis , Interferons/genetics , Interleukins/genetics , SARS-CoV-2/isolation & purification , Adult , Aged , Antiviral Agents/therapeutic use , COVID-19/epidemiology , Disease Susceptibility , Female , Genotype , Humans , Iran/epidemiology , Male , Middle Aged , Polymorphism, Restriction Fragment Length , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL